New giant octopus species discovered near Alaska

December 29, 2017 by  
Filed under Eco, Green

Comments Off on New giant octopus species discovered near Alaska

You wouldn’t expect humans to have missed a whole species of giant octopus – but researchers recently revealed that’s exactly what we did. Per Earther , the giant Pacific octopus (GPO), which is the biggest octopus we know about on the planet, averaging 110 pounds and 16 feet across , is in reality two species. Alaska Pacific University (APU) undergraduate student Nathan Hollenbeck led the effort to discover what the team is calling the frilled giant Pacific octopus . Scientists had wondered if GPO was an umbrella name, referring to more than one species, for decades, according to Earther. In 2012, APU and United States Geological Survey scientists discovered a genetically distinct group of the giant octopus, but only gathered small samples of arm tissue before sending the creatures back to the ocean , so weren’t sure if the groups were also visually distinct. Hollenbeck hoped to unravel the enigma for his senior thesis. Related: Octopuses are taking over the oceans, and no one knows why He found some answers in shrimp trawling bycatch, where octopuses sometimes show up. It didn’t take him long to realize he could identify two types simply by looking at the cephalopods . One was a regular GPO; the other had a frill running along its body, raised skin eyelashes, and two white spots on its head instead of the one of regular GPOs. “Presumably, people have been catching these octopuses for years and no one ever noticed,” David Scheel, Hollenbeck’s advisor and APU professor, told Earther. Hollenbeck snipped off small arm pieces – and to see if in the future researchers could avoid that invasive technique, collected DNA with a cotton swab. He was the first to try the less invasive method on an octopus. And both samples confirmed the frilled one is a species distinct from the GPO. GPOs can be found from Alaska to California to Japan, but the researchers gathered reliable reports of the frilled giant octopus only from Juneau to the Bering Sea, according to Earther. But the new species could be common in the deeper water habitats they appear to prefer. Frilled giants comprised one third of the octopus bycatch Hollenbeck scrutinized. The American Malacological Bulletin published the research earlier this year here and here ; scientists from the United States Geological Survey and Alaska Resource Education contributed to the second paper. + Frilled giant Pacific octopus Via Earther Images courtesy of D. Scheel and via and Depositphotos

View original post here:
New giant octopus species discovered near Alaska

What the tiniest creatures can teach us about adapting to life’s challenges

October 24, 2017 by  
Filed under Business, Eco, Green

Comments Off on What the tiniest creatures can teach us about adapting to life’s challenges

John Steinbeck wrote that “all things are one thing and that one thing is all things—plankton, a shimmering phosphorescence on the sea and the spinning planets and an expanding universe, all bound together by the elastic string of time.” He had a great big feeling about life, but spent a lot of time just poking around little tidepools to get it. Great minds–from Copernicus to Galileo, Newton, Darwin and Einstein–have always done this, observing life’s tiny details and looking for connections between them. These little things add up to deep patterns that can sometimes change the world. Steinbeck’s gentle nudge to “look from the tidepool to the stars and then back to the tidepool again”–is actually an act of revolution. Little things trigger big changes–and that’s exactly how biomimicry can help us better adapt to the world around us. A lot of people don’t know that Steinbeck was also a biologist, or that his best friend was Ed Ricketts, the only scientist in history to have 15 animal species (and a nightclub) named after him . Before Ricketts, biology was a pretty Victorian affair. Gentlemen naturalists traveled around collecting specimens, dissecting them and pinning them on boards, categorizing and naming them. Most studied each creature separately, but Ricketts was compelled by the connections between them–he is widely regarded as the first marine ecologist. Ricketts and Steinbeck were having tough times in their personal lives, and decided to charter a fishing boat, and escape along the Pacific Coast. They went from Monterey to San Diego, along the length of Baja California, around Cabo San Lucas, and finally into the Sea of Cortez. Steinbeck’s book, The Log From the Sea of Cortez , is a cult classic for geeks like me, describing how the pair dropped anchor here and there, puttering around the tidepools they discovered, observing and collecting tiny creatures along the way. Inevitably, a group of little kids would gather round to see what they were up to. The kids had never seen scientists before, and didn’t know what to make of grown men poking around tidepools for something besides dinner. Exploring was strictly kid stuff, so they figured Ricketts and Steinbeck must be doing something else. “ What did you lose? ” they would ask. The men would look at them in surprise. “ Nothing! “ “ Well, what are you looking for then? “ Being a philosophical kind of writer, Steinbeck thought this was a great question. What exactly were they looking for? What were they expecting these tiny creatures to teach them? Quite a lot, it turns out, and many regard Ricketts’ book Between Pacific Tides as the Bible of modern marine biology. There were hundreds of small discoveries–and 50 new species–but Ricketts’ key contribution was the way he untangled complex relationships among ocean inhabitants, large and small. He saw that water temperatures affected plankton levels, which affected larger species, and that overfishing in warm years led to crashes in the sardine populations years later. He even predicted the catastrophic loss of the once-thriving Monterey fishery. Everything was connected, and small effects reverberated in unexpected ways through vast ecological webs. Ricketts made a habit of observing small details in the living world, and saw them build to deep patterns that suddenly changed everything. This process–studying nature’s little details, finding the connections between them, identifying deep patterns that stand the test of time, and abstracting them into solutions we can borrow—is the key to biomimicry , the art and science of innovation inspired by nature. Biomimicry is part of a profound change in the way we see the world, the way we make and do things, and the way we think about our way of life. When we really look, we begin to realize that humans face exactly the same kinds of problems other species do, and that the 30 million or so species that share this planet with us have their own solutions. “After 3.8 billion years of research and development,” writes biomimicry pioneer Janine Benyus , “failures are fossils, and what surrounds us is the secret to survival.” These strategies are the ultimate in sustainability—solutions that have worked for generations without diminishing the potential for future offspring to succeed. Sharks have cruised the oceans virtually unchanged for 400 million years, and the ancient Hawaiian concept of the octopus as the last survivor of a past universe is accurate, because their relatives passed through several major extinction events that wiped out almost all their contemporaries. These ways of life work, even as the world changes. 99.9% of the species that have ever existed are now extinct, and those that remain are the survivors, the most successful 0.1% of all life. As I write in my new book, Teeming: How Superorganisms Work Together to Build Infinite Wealth on a Finite Planet (and your company can too) , we clever humans overthink our answers, forcing square pegs into round holes because we can. We invent one-off solutions—and new polymers–for every problem, and get heavy-handed about creating them. If we’re dealing with high impact—in the automotive or aerospace industry, for instance—we heat, beat, treat various raw resources into submission. If we need to stick something in place, we use toxic glues. Flooding? Build a giant dam. Drought? Build a very long ditch. Our solutions require huge amounts of energy and materials, and produce a lot of waste–things no creature can eat. Our chemical answers make us sick, and poison our planet, and are neither adaptive nor resilient. The creatures of the tidepools solve these same kinds of challenges every day, without fancy Research and Development teams or even—in many cases—brains. Big waves smash down and sweep across the rocks. Organisms are stranded in the baking sun, blasted with UV light. Tiny creatures are constantly flooded or baked, exposed to radical swings in salinity and temperature. Yet their strategies last, while our own industrial solutions have only been around a couple hundred years and seem to create more heartaches and headaches. What can these little beings teach us? Related: INTERVIEW: Dr. Tamsin Woolley-Barker on how biomimicry can improve happiness and creativity in the workplace Sea urchins thrive in pounding surf, because their spines are like shock absorbers, helping them wedge between rocks. Look through the scanning electron microscope, and you see an exquisite microstructure, perfectly designed to spread impact forces and stop cracks from spreading, with predetermined weak points that can fail without hurting the animal. Stiff and strong, yet flexible, these natural ceramics regenerate at surrounding temperatures from local minerals, powered by algal energy scraped from nearby rocks and grown from sunlight. Abalone and oyster shells offer stunning mother of pearl with remarkable properties. One deep-water oyster–the windowpane oyster—is nearly transparent and practically bulletproof. Nacre, as this material called, is incredibly strong, and yet chemically, isn’t much different from crumbly chalk. Look under the right microscope, and you’ll see it is composed of many layers of tiny hexagonal tiles, mortared with thin sheets of bendy, elastic protein. All of it is hyper-efficient, made from local materials, using life-friendly chemistry and conditions. Material scientists are working hard to 3D print analogous solutions. Barnacles filter tiny food particles from the water, protruding their highly modified legs to use as nets. But when the tide goes out, their homes seal perfectly shut, protecting their tiny, watery world. The microscope reveals four little French doors that open and shut. Each is hard and strong, but near the edges, they transition into a flexible, plastic-like gel, like the rubbery seal inside your car door–but intricately fringed to create an incredibly tight, interlocking seal. These are precision mechanics, grown from nanoscopic genetic blueprints, in microscopic cell factories. They self-repair when damaged, and respond intelligently and instantly to changing conditions. Sea cucumbers are soft and floppy, sliding through the narrow spaces between rocks. But when touched, tiny hairy whiskers in their skin enzymatically orient and bind into a firm, rigid net. When the predator is gone, other enzymes break the bonds and make the skin soft again. Scientists are copying this for electrodes (rigid for implanting, and soft in the body), and protective clothing like bulletproof vests. Seastars must stick to the reefs as they move around in search of prey, even as violent waves come and go. The solution is a reversible adhesive—a sticky glue that works underwater, even on slimy algae–that they excrete from their feet and turn instantly on and off with protein activators. Imagine if we could copy that! All these solutions work at ambient temperatures using locally available materials and water as a solvent. There are no toxic chemicals, no extreme heat, no carbon emissions. They don’t even need to be manufactured—they assemble themselves from the bottom up, powered (ultimately) by sunlight. These solutions adapt to local conditions on the fly and are made from a small set of universal building blocks that other creatures can eat and make new things with. These solutions are edible! They are smart, responsive, and flexible, and perform as well, if not better, than synthetic materials–while weighing 30 to 300% less. They are deeply efficient and sustainable, shaped by billions of years of natural selection, making our own synthetic solutions look distinctly amateurish. These solutions and many more have caught the eye of “mainstream” business and other organizations–Fortune Magazine called Biomimicry the #1 trend in business for 2017, and many institutions not traditionally thought of as “green”–including the military, NASA, and a wide range of industrial chemical, medical, and material science companies are eager to tap nature’s “open source” genius. It’s an exciting time, and little ripples of innovation are starting to add up to a tidal wave of change. Biomimicry is a profound change in the way we see the world, the way we and do things, and the way we think about our way of life. Small things build to deep patterns that have the power to change everything. For every challenge we face, we can ask ourselves how nature would do it, then look closely. The little things we see around us every day could one day change the world . + Teeming: How Superorganisms Build Infinite Wealth in a Finite World lead image via Unsplash Dr. Tamsin Woolley-Barker is an evolutionary biologist, primatologist, and biomimicry pioneer with an extensive background in leadership, innovation, and sustainability. Her book Teeming: How Superorganisms Work to Build Infinite Wealth in a Finite World is available now .

See the rest here:
What the tiniest creatures can teach us about adapting to life’s challenges

The octobot is the worlds first autonomous soft-bodied robot

August 26, 2016 by  
Filed under Green

Comments Off on The octobot is the worlds first autonomous soft-bodied robot

A silicone robot completely free of electronic parts may sound futuristic, but that’s exactly what researchers at Harvard University have created. Based on the shape and motion of the octopus, the “octobot” is the world’s first completely soft robot , and its motion is completely autonomous. https://www.youtube.com/watch?v=1vkQ3SBwuU4 To create the octobot, Harvard researchers used a combination of 3D printing , soft lithography, and molding to shape the robot’s body from silicone. Rather than a traditional battery or electronic components, the small robot is pneumatic-based, meaning it’s powered by gas under pressure. The robot uses a small amount of hydrogen peroxide as fuel. A chemical reaction to platinum within the bot creates gas which inflates the octobot’s tentacles like balloons. A microfluidic logic circuit controls the flow of fuel in the octobot’s limbs, inflating four at a time to propel the device forward. Related: Tiny robot caterpillar can push objects ten times its size At present, the octobot can’t do much – scientists are not yet able to steer it in any particular direction as it moves, and the liquid fuel only lasts between four and eight minutes. However, future models will include sensors that allow the robot to detect nearby objects and steer toward or away from them. It’s a fascinating proof of concept: the robots of the future may look like nothing like what we’ve envisioned. Via Slashdot Images via Harvard University

View original post here: 
The octobot is the worlds first autonomous soft-bodied robot

The world’s ‘Third Pole’ is melting because of climate-warming black carbon

August 26, 2016 by  
Filed under Green

Comments Off on The world’s ‘Third Pole’ is melting because of climate-warming black carbon

Global warming caused by the burning of fossil fuels is heating up the North Pole and South Pole, causing the Greenland and Antarctic ice sheets to melt. The rapidly retreating glaciers could have far-reaching consequences for the planet, as they threaten to raise sea levels, change global ocean circulation patterns and alter global atmospheric circulation patterns. But there is another worrisome trend related to climate change that is found in the so-called “Third Pole” located in Central Asia. The snow-covered Himalaya-Hindu-Kush mountains and the Tibetan Plateau contain the largest ice mass on the planet outside of the polar regions and they are also experiencing dramatic melt, threatening the water supply for more than a billion people.

Here is the original post:
The world’s ‘Third Pole’ is melting because of climate-warming black carbon

Ambio lamp glows with bioluminescent bacteria instead of electricity

January 5, 2015 by  
Filed under Green

Comments Off on Ambio lamp glows with bioluminescent bacteria instead of electricity

A Dutch designer has created a lamp that needs no electricity: it consists of a glass tube filled with bioluminescent bacteria taken from octopuses and suspended in a saltwater solution. All it needs in order to light up is a gentle tap every so often to keep it swaying. It’s not uncommon for designers to be inspired by the beauty of nature , but Ambio takes it a bit further. In a complete marriage of design and biology, Teresa van Dongen developed her glowing lamp as her graduation project at Design Academy Eindhoven. Read the rest of Ambio lamp glows with bioluminescent bacteria instead of electricity Permalink | Add to del.icio.us | digg Post tags: bacteria , bioluminescence , bioluminescent , Design Academy Eindhoven , dutch , dutch design , lamp , Light , Netherlands , ocean life , Octopus , sea life , Teresa van Dongen

Read the rest here: 
Ambio lamp glows with bioluminescent bacteria instead of electricity

Octopus Is First Invertebrate to Use Tools, Turning a Coconut Into Mobile Home (Video)

December 15, 2009 by  
Filed under Green

Screenshot via YouTube Scientists have found an octopus that is using a coconut shell as it’s own shell. It’s a brilliant mobile home idea

Read the original here:
Octopus Is First Invertebrate to Use Tools, Turning a Coconut Into Mobile Home (Video)

Bad Behavior has blocked 931 access attempts in the last 7 days.